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SUMMARY
Spatial single-cell omics provides a readout of biochemical processes. It is challenging to capture the tran-
sient lipidome/metabolome from cells in a native tissue environment. We employed water gas cluster ion
beam secondary ion mass spectrometry imaging ([H2O]n>28K-GCIB-SIMS) at%3 mm resolution using a cryo-
genic imaging workflow. This allowed multiple biomolecular imaging modes on the near-native-state liver at
single-cell resolution. Our workflow utilizes desorption electrospray ionization (DESI) to build a reference
map of metabolic heterogeneity and zonation across liver functional units at tissue level. Cryogenic dual-
SIMS integratedmetabolomics, lipidomics, and proteomics in the same liver lobules at single-cell level, char-
acterizing the cellular landscape andmetabolic states in different cell types. Lipids andmetabolites classified
liver metabolic zones, cell types and subtypes, highlighting the power of spatial multi-omics at high spatial
resolution for understanding celluar and biomolecular organizations in the mammalian liver.
INTRODUCTION

Technological advances in the past decade have enhanced

spatial single-cell multi-omics to address multi-level heteroge-

neities in tissues. Great efforts are underway to map the diversity

of cell types and subtypes with biomarkers in healthy and dis-

ease tissues, such as the Human Biomolecular Atlas Program

(HuBMAP),1 the Human Tumor Atlas Network (HTAN),2 and the

Kidney Precision Medicine Project (KPMP3).4 There is an explo-

sion of single-cell transcriptomics and proteomics for such ef-

forts. However, spatial metabolomics, a readout of phenotypes

and molecular networks at the genomic, transcriptomic, and

proteomic levels, remains less explored.5–7 Mass spectrometry

imaging (MSI) is the primary method for spatial metabolomics,

enabling multiplexed mapping of untargeted molecular species

within cells and tissue. Commonly used MSI technologies

include desorption electrospray ionization (DESI)8 and matrix-

assisted laser desorption ionization (MALDI).9 DESI is an ambient
ionization technique with preferential ionization and character-

ization of metabolites and lipids at a spatial resolution as high

as 30 mm.7 MALDI is utilized for lipids, abundant proteins, and

metabolites with a suitable matrix at an achievable spatial reso-

lution of 5–10 mm.10

However, practical application of MSI at single-cell resolu-

tion has been challenging. First, detection limits hinder imag-

ing of low concentrations of biomolecules, as detectable

signals decrease significantly in smaller pixels. Second and

critically, cryogenic analysis, an approach to maintain pristine

chemical gradients, is not widely applicable to most MSI

tools. Fresh-frozen tissue retains cellular content at a near-

native state, especially for dynamic and transient metabolites.

Finally, due to the incompatibility of sample preparation and

the difficulty of preserving dynamic metabolic gradients,11 it

is nearly impossible to acquire multi-omic data on the same

sample or to spatially co-localize molecules at the single-

cell level.
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To overcome these hurdles, a buncher-time-of-flight (ToF)

SIMS, coupled with a high-voltage water gas cluster ion beam

(H2O)n (n>28K)-GCIB and a dual-SIMS workflow,12 has been

developed and coupled with DESI and liquid chromatography-

tandem mass spectrometry (LC-MS/MS) analyses. The first

step takes advantage of intact biomolecular imaging (up to m/z

5,000) at an achievable spatial resolution of up to �1 mm, using

a newly designed GCIB operating at �70 kV.11,13 Coupled

with cryogenic sample handling, frozen-hydrated biosamples

are transferred under nitrogen atmosphere and imaged in a

near-native state (at 100 K). Subsequently, cell-type-specific

and structural proteins are mapped in the same sample

stained with a panel of lanthanide-conjugated antibodies, using

C60-SIMS at 1 mm resolution. This development allowed simulta-

neous mapping of metabolites, lipids, and peptides in the

same tissue section, with single-cell resolution and high sensi-

tivity.11,12 Building on single-cell imaging by dual-SIMS, we

incorporated other imaging modalities (e.g., DESI, MALDI, he-

matoxylin and eosin [H&E], and mRNA scope) as well as LC-

MS/MS and AI-aided computational processing (DeepCell) to

achieve multi-omic imaging of liver tissue architecture at both

tissue level and single-cell level.

We applied this pipeline to liver tissue, a critical metabolic hub

that performs uptake and storage of nutrients, metabolism, bile

secretion, detoxification, protein synthesis, and immune func-

tions.14 The hepatic parenchyma exhibits metabolic zonation to

facilitate these functions, based on the gradient of oxygen-and-

nutrient-rich blood along the portal triad (PT) to central vein (CV)

axis. The periportal (PP) region surrounding the PT receives a

maximum amount of nutrients and oxygen, being responsible

for oxidativemetabolism, including b-oxidation, gluconeogenesis,

bile formation, and cholesterol synthesis. The pericentral (PC)

region surrounding the CV receives less oxygen and nutrients,

mainly conducting detoxification, ketogenesis, lipogenesis,

glycolysis, glycogen synthesis, and glutamine synthesis.15,16

Within the liver parenchyma, hepatocytes make up 70% of

the cell population and are metabolically heterogeneous

along the porto-central axis. Although hepatocytes in different

zones appear homogeneous morphologically, they are metaboli-

cally distinct, displaying zonal preferences of metabolic enzymes

involved in oxidative energy, carbohydrate, lipid, and nitrogen

metabolism. These enzymes include carbamoylphosphate syn-

thetase (CPS1), glutamine synthetase (GS), and cytochrome

P450, family 2, subfamily AE, polypeptide1 (Cyp2ae1).17 The het-

erogeneity of the liver extends to the cellular level,with highly orga-

nized multiple cellular structures executing essential liver func-

tions. Non-parenchymal cells, including macrophages (Kupffer

cells), liver sinusoidal endothelial cells, and hepatic stellate cells,

are located within the hepatic sinusoids and play a critical role in

interactingwith and regulating parenchymal cells.18 Liver zonation

and function have mainly been explored with immunohistochem-

istry (IHC) and single-cell spatial transcriptomics16,19; however,

mapping lipids and metabolites in single cells has lagged. Metab-

olites and lipids are often altered in liver diseases and are vital

effector molecules in metabolic pathways.20,21

Here, we present a multimodal MSI approach centered on

DESI, (H2O)n-GCIB-SIMS, andC60-SIMS (dual-SIMS) formapping

of unlabeled endogenous metabolites and lipids, and targeted

proteins within anatomical structures and cell types, providing a
2 Developmental Cell 59, 1–13, April 8, 2024
powerful approach to explore integrated spatial biology in mouse

and human liver. This workflow is complemented by histological

(H&E) staining for anatomical structure annotation andmultimodal

image alignment, RNAscope formRNA transcript profiling of land-

mark genes22 for zonal antibody validation, and MALDI Orbitrap

MSI for ion species confirmation. Moreover, ultra-high perfor-

mance liquid chromatography (UPLC) coupled with electrospray

ionization (ESI) tandem mass spectrometry (MS/MS) is adapted

for lipid confirmation in DESI and SIMS experiments. Heterogene-

ities in liver tissue were detected by a combination of metabolites,

lipids, and proteins in human and mouse liver, including sex-spe-

cific zonation patterns, functional-specific zonation, and potential

metabolic states of different cell types. We found that lipid and

metabolite composition may classify liver zonation and cell types.

Themultimodal workflowwepresent for single-cell multi-omic im-

aging allows for an unprecedented understanding of multi-level

heterogeneities, metabolic cell states, coordinated molecule net-

works, and cell identity.

RESULTS

Multimodal imaging centered on mass spectrometry
imaging technologies generates a spatial multi-omic
atlas of liver tissue
To comprehensively assess the spatial organization of liver tissue

with regard to its cellular, metabolic, and lipidomic heterogene-

ities, we performed multimodal imaging on consecutive tissue

sections of mouse and human liver, using DESI, H&E, dual-

SIMS, and RNAscope (Figure 1). DESI was employed to image

an entire tissue section at a spatial resolution of 40mm inboth pos-

itive and negative ion modes. More than 100 lipid and metabolite

features were extracted, and ion species localized to the PP and

PC regions (Figure 1A) were identified. Guided by DESI and H&E

images, a region containing both PT and CV was selected on

consecutive tissue sections for dual-SIMS imaging on a serial

fresh-frozen tissue with single-cell resolution (Figure 1B). We im-

plemented a technological development using a three-step pro-

cess: first, cryogenic (H2O)n-GCIB-SIMS was performed to

localize >200 lipid andmetabolites in a pristine native environment

at 3 mm per pixel, followed by immunostaining with a panel of

lanthanide-conjugated antibodies specific to liver biology (key re-

sources table) on the same tissue section. C60-SIMSwas then uti-

lized to imagemetal-labeled antibodies tomap the cell landscape

and tissue structure at 1 mm per pixel. As (H2O)n-GCIB-SIMS re-

moves about 100 nm of material from the tissue surface, the anti-

body markers stain the same cells as those from which lipids

and metabolites are detected. This approach facilitated image

alignment and cell segmentation to register multi-omics data to

the same cells on a single section, elucidating biomolecular

complexity within different cell types directly in native tissue con-

tent without dissociation, which is otherwise difficult to integrate.

For validation of several zonation and cell-type-specific

markers, RNAscope was performed on a consecutive tissue

section for transcriptomic analysis (Figure 1D). To confirm ion

species assignment by accurate mass and fragmentation

pattern, we performed (1) MALDI on an Orbitrap, performed on

the serial sections for in situ MS/MS analysis (Figure 1C), and

(2) lipidomics analysis using UPLC with ion mobility ToF MSE

(HDMSE) data-independent acquisition and analysis (Figure 1F).



Figure 1. Schematics of MSI-centric multimodal imaging workflow reveals 2D/3D biomolecular atlas of liver

(A and B) Consecutive sections from liver tissue blocks are assessed by (A) DESI-MSI exhibiting the distribution of lipids and metabolites within histologically

defined structural units of liver within the tissue architecture and by (B) SIMS-MSI including (H2O)n-GCIB-SIMS for lipid and metabolite imaging at single-cell

resolution, followed by C60-SIMS on the same tissue section, followed by image integration and single-cell-specific lipid and metabolite extraction.

(C and D) (C) MALDI validation of lipids detected by DESI and SIMS, and (D) RNAscope validation of major antibody markers.

(E) H&E image of serial liver section for annotation of morphological features and guidance of MSI imaging.

(F) Parallel LC-MS/MS analysis for second validation of species annotation.
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This was followed by computational data processing for

cellular and structure segmentation, omics integration, and

discriminant analysis. Our current work improved a previous

workflow12 using cross-validation of three MSI modalities and

LC-MS/MS, AI-aided computational processing for precise

cell segmentation, and comprehensive visualization at tissue

and single-cell levels. 2D/3D image reconstruction was per-

formed to visualize molecular and cellular heterogeneities,

showing distinct molecular clusters in metabolic zones, omics

spatial networks, and the cellular landscape in the PT region

in human liver.

DESI-MSI reveals metabolic zonation-specific
metabolites and lipids in mouse liver
To evaluate metabolite and lipid distribution with metabolic

zones, liver tissues from 6 different mice (3 male and 3 female)

were examined histologically. H&E-stained images were anno-

tated to identify the PT and CV regions, showing uniform distri-

bution patterns within the tissue (Figures 2Ai and S1A). The

annotation was then validated by transcript and protein

markers targeting metabolic enzymes that are specific to PP

and PC regions.17 For example, albumin (Alb) was concen-

trated in the PP region, and glutamine synthetase (Glul) was

localized in the PC region, using RNAscope, respectively

(Figures 2Aii and S1B). The distributions were consistent with

previous work19; however, we noted sex-linked differences.

Alb was concentrated more around the PP zone in male mice,

whereas it expanded toward the CV in female mice. Glul

expression has been previously shown to exhibit sex-specific

variation in different mouse and rat strains.23 However, we

observed a similar distribution pattern in the male and female

C57BL/6 mice strains used in this study.
DESI imaging of mouse liver identified essential metabolites

and lipids in both positive and negative ion modes. In positive

mode, lipid classes such as glycerophospholipids and glyceroli-

pids were observed (Tables S1A and S1B). In negative ion mode,

more diverse species were observed, including free fatty acids

(FAs) and small metabolites in a low m/z range (m/z 100–400),

glycerophospholipids in the high m/z range (m/z 700–800), and

conjugated bile acids (Tables S1A and S1B). To extract PP-spe-

cific and PC-specific lipids and metabolites, we first sought to

create a segmentation mask for these regions within tissue sec-

tions. A few ion species (m/z 124.01, 280.23, 282.25, 306.07, and

309.28 in negative ionization mode and m/z 534.29, 631.47,

734.57, 794.51, 802.5, and 852.55 in positive ionization mode)

exhibiting unique distribution patterns (Figures 2Aiv, 2Avi, and

S1) were used to perform bisecting k-means clustering with

Euclidean distance, within the SCiLS software platform. Spatial

segmentation was performed with edge-preserving denoizing

to remove pixel-to-pixel variability observed in MSI datasets.24

This resulted in PP and PC clusters in individual mouse liver tis-

sue sections in both positive and negative ion modes, shown as

a segmentation map (Figures 2Aiii, 2Av, S1C, and S1D).

The cluster specificity was confirmed by comparing Alb and

Glul transcript distribution with DESI segmentation (Figures S1B,

S1C, and S1D). To identify lipids andmetabolites that discriminate

PC versus PP clusters, we implemented a binary classifier—

receiver operating characteristic (ROC)-area under the curve

(AUC) analysis.25,26 Each tissue-specific ion was evaluated for

its discriminating power, using a threshold of the (AUC >0.70 to

be considered a classifier. We observed that metabolites such

as glutathione (GSH), taurine, and conjugated bile acids were zo-

nated in PP region (Figures 2B, S1G, and S1H). Our results were

complementary to previous results on the metabolic gradients
Developmental Cell 59, 1–13, April 8, 2024 3
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from PC to PP: liver bile acids are primarily synthesized in PC

hepatocytes; they flow toward the bile duct, and the enzymes

cascade involved in bile acid biosynthesis is organized spatially.

In particular, the enzyme conjugating bile acids is abundant in

PP region, where taurine also comes in from blood supply.19,27

As noted, we observed sexual dimorphism in the distribution of

several lipid species.While previous studies have shown sex-spe-

cific differences in lipid metabolism, it has not been shown in the

spatial context within liver.28,29 Diacylglycerols (DGs) and free FAs

were zonated in the PC region (Figures 2B, S1E, and S1F), with

the average ROC-AUC for individual DG ions >0.89 for males

and >0.7 for females (Figure 2B). Compared with females, male

mice showed higher amounts of DGs in PC versus PP zones

(log2 foldchangeof�1.5 formales and0.4 for females) (Figure2C).

Similar observations were made for FAs (Figures 2B, 2C, and

S1F). While some FAs such as FA (18:1), FA (20:1), FA (18:3;O),

FA (18:2), and FA (20:0) showed high specificity for PC versus

PP zone, with the average ROC-AUC for individual ions >0.88

for males and >0.7 for females (Figure 2B), others such as FA

(18:2;O), FA (16:0), FA (22:5), and FA (20:2) exhibited higher spec-

ificity for PC zones in males versus females, with the average

ROC-AUC for individual ions >0.73 for males and <0.57 for fe-

males. FA (20:0) and FA (18:3;O) showed relatively higher abun-

dance in PC versus PP in both male and female mice, and FA

(20:1) and FA (22:5) showed minimal differences between the re-

gions in female mice (Figures 2C and S1F).

The PC region has previously been reported to exhibit a higher

degree of lipogenesis, FA synthesis, and acetyl CoA carboxylase

expression than the PP zone.30,31 Phospholipids, including

phosphatidylcholine (PC) and lysophosphatidylcholine (LPC),

did not exhibit a specific pattern. Some lipids (e.g., PC (40:6))

showed similar distribution between the PP and PC zones, while

others (e.g., PC (36:5), PC (32:0), and PC (34:1)) exhibited differ-

ential distributions between regions or between regions and

sexes (e.g., LPC (18:2), LPC (18:0), LPC (16:0), PC (38:4), and

PC (39:7)) (Figures 2B, 2C, and S1I). Thus, while male and female

mice have histologically and morphologically similar livers, they

are metabolically distinct.

DESI-MSI reveals zonation-specific metabolites and
lipids in human liver
The DESI workflow was then performed on consecutive tissue

sections from human liver. H&E staining was again performed to

assess tissue morphology and annotate PP and PC regions (Fig-

ure 2D). RNAscope was used to validate Glul staining, which un-
Figure 2. DESI-MSI reveals periportal- and pericentral-specific lipids a

(A) (Ai) H&E staining performed on a normal mouse liver section to identify the ce

(Aii) RNAscope is performed on a consecutive tissue section stained for expressi

differential staining for periportal (PP) and pericentral (PC) regions, respectively.

(Aiii and Av) Spatial segmentation of pixels based on distributions of a few lipids

(Aiv and Avi) Distribution of a few lipids and metabolites showing PC and PP spe

(B) Heatmap depicting the predictive performance of features measured by AUC-R

female (n = 3) and male (n = 3) mouse liver sections.

(C) Fold change values comparing the mean intensity of PC versus PP regions fo

(D) H&E section with manual annotation of CV and PT regions in human liver se

are shown.

(E) Fluorescent RNAscope image of cell markers in human liver. H&E staining in (Ei

of (Eii) macrophages (CD68) in yellow, glutamine synthetase (Glul) in green, and

endothelial cells (LYVE1) in green, and nuclear staining (DAPI) in blue.
like in mouse liver, appeared as dispersed puncta around the CV

region (Figure 2Eii). This is likely due to lower expression of the

gene in human liver and needs further optimization. Hence, PP

and PC regions were annotated manually based on H&E staining

(Figure 2D).

DESI imagingat40mmspatial resolutionshowedsimilar average

mass spectra profiles in both positive and negative ion modes,

compared with mouse liver. The annoted species are in Tables

S1A and S1B. Taurine-conjugated and glycine-conjugated bile

acids were abundant in the PT and PP region, as well as in the

septa connecting the neighboring PTs, showing similar functional

zonation between human and mouse liver (Figure 2D). The vascu-

lature was identified by the abundance of the marker heme

B. Cholesterol, a precursor to bile acids, was concentrated within

the portal vein (PV) and CV regions. Sphingomyelins (SMs),

including SM 34:1, were co-localized with cholesterol (Figure 2D),

where SMs are postulated to form hydrophobic lipid raft domains

with cholesterol, preventing hepatic damage from bile salts and

alsoplaying a role inpathophysiology.32,33 Similarly, stearoylcarni-

tinewas localized in thePPregion (Figure2D),whereacylcarnitines

play an important role in transferring long-chain FAs to mitochon-

dria for b-oxidation.34 Several small metabolites and lipid species

exhibiteddifferential distributions in human tissue (Figure2D). FAs,

DAGs, and triglycerides (TAGs) exhibited distinct distribution pat-

terns that, unlike inmouse tissue,didnotoverlaywith thePCregion

(Figure 2D). This could stem from the complexity of human liver,

wheremetabolic gradients aremore dynamic and heterogeneous,

based on a person’s genetic profile and changes in gene expres-

sion and metabolic-enzyme-based factors, such as diet, hor-

mones, gender, and underlying pathology.15,35 Similarly, varied

patterns of phospholipid species were observed within the liver.

In addition to 2D imaging of tissue sections, we postulated that

3D DESI would aid visualization of the distribution of lipids and

metabolites within 3D tissue structures and gradients with

respect to tissue depth, capturing branching of blood flow and

anatomic structure. We generated a 3D model visualizing differ-

entially distributed lipids by performing DESI on serial sections

(Video S1) and observed consistent distribution of lipids andme-

tabolites along the tissue depth.

SIMS imaging delineates heterogeneities of multiple
biomolecules and cell types at single-cell level in
mouse liver
To associate lipids and metabolites with cell types in the liver,

dual-SIMS imaging at spatial resolution of 1–3 mm was
nd metabolites in mouse and human liver

ntral vein (CV) and portal triad (PT) regions.

on of albumin (Alb: yellow) and glutamine synthetase (Glul: magenta), showing

and metabolites from DESI-MSI in (Aiii) negative and (Av) positive ion modes.

cificity in both ion modes are shown.

OC (in rows) and classification (in columns) fromDESI for PP and PC regions in

r the features from (B). Error bars represent mean ± standard deviation.

ction. The corresponding images for distribution of different classes of lipids

) and corresponding RNAscope image on the serial section showing distribution

nuclear staining (DAPI) in blue. (Eiii) macrophages (CD68) in yellow, sinusoidal
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A i    H&E image of ROI

D i tSNE cell clusters by proteins

B Intensity plot from CV to PV

D ii tSNE cell clusters by metabolites/lipids

PV

CV

A ii (H2O)n-GCIB-SIMS and C60-SIMS images on the same tissue section

A iii Image registration
DeepCell cell segmentation

C HCA and heat-map using intensity of
metabolites/lipids and cell types

PI 38:4 Taurocholic acid PS 40:6 Heme B

CD45 CD11b CD68 LYVE-1 GFAP Glul EGFR  
Na/KATPase Nuclei

Figure 3. Dual high-resolution SIMS imaging delineates the metabolomic and lipidomic states in different cell types on the mouse liver

section

(A) (Ai) H&E staining image of central vein (CV) and portal vein (PV) region.

(Aii) Representative color overlay images of dual-SIMS. Metabolite and lipid image in the same region as in (Ai) on a serial frozen-hydrated section using

(H2O)n(n=30k)-GCIB-SIMS at a spatial resolution of 3 mm. Blue, PI 38:4; magenta, taurocholic acid; yellow, PS 40:6; green, heme B.More single-species images are

in Figure S2. Protein image by lanthanide-conjugated antibodies from the region highlighted in the red box, using C60-SIMS at a spatial resolution of 1 mm. Red,

CD45 and CD11b; yellow, GFAP; white, LYVE-1; magenta, F4/80 and CD68; cyan, EGFR and Na/KATPase; green, Glul; blue, nuclei.

(legend continued on next page)
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performed on consecutive mouse liver sections. Guided by H&E-

stained images, a region of interest (ROI) containing both CV and

PV was selected (Figure 3Ai) for (H2O)n (n=30k)-GCIB-SIMS imag-

ing in negative ion mode, mapping more than 100 lipids and me-

tabolites. These species were heterogeneous around CV and

PV, including nucleotides, bile acids, glucose (with isomeric

forms), FAs, phosphatidylinositols (PIs), phosphatidylserines

(PSs), lysophosphatidylserines (LPSs), phosphatidic acids

(PAs), and lysophosphatidic acids (LPAs). PI (38:4) was highly

concentrated in the PC region, and PS (40:6) distributed in com-

plimentary locations with an elevated concentration around the

PP region. Heme B was mainly present inside veins, while taur-

ocholic acid was present in the PP region (Figures 3Aii and

S2A). In the same region, 10 cell-type-specific and tissue struc-

ture markers illuminated a heterogeneous cell landscape and

recapitulated anatomical structures in the mouse liver (Fig-

ure 3Aii). The single ion images and list of selected species are

detailed in Figure S2 and Table S1C, exhibiting various distribu-

tion patterns.

Except for the representative species in Figure 3Aii, principal-

component analysis (PCA) revealed clusters of ions that

contribute to the major features around the CV and PV. Heme

B, a marker for the vasculature, was highly concentrated inside

the vein in principal component 2 (PC2). As an essential lipid con-

stituent of mitochondrial membranes, cardiolipins (CLs) were

elevated around the PV rather than the CV, in linewith the oxygen

gradient captured in PC4.36 PC5 highlighted the CV region, with

elevated species such as PI (38:4), PS (38:4), PA (38:4), LPA

(18:0), FA (20:4), and PS (38:3). On the other hand, PC6 showed

the radiated gradient around the PV with dominant species LPS

(16:1) and LPS (16:0). The chemical gradients of these species

were measured along the porto-central axis by line scanning

(Figure 3B). Glucose isomeric forms appeared more abundant

inside the CV and PV, the same as heme B. GSH and AMP

had similar patterns as glucose species, indicating high abun-

dance of energy-related metabolites in the CV and PV region.

Most PI species were concentrated around the CV region (e.g.,

PI (38:4)), while PA and PS species were higher in the PV region

(e.g., PA (40:6), PS (40:6)). PE (40:6) appeared to bemore intense

at the edge of the CV and PV, contributing to the curved structure

andmechanical resistance facilitated by the conical shape of PE.

Sequential C60-SIMS imaging on the same region profiled by

(H2O)n (n=30k)-GCIB-SIMS further revealed the distribution of

targeted proteinmarkers, using a panel of lanthanide-labeled an-

tibodies. The panel was designed to identify major cell types, im-

mune cells, cell boundaries, and zonation markers within liver

(key resources table). Leukocytes, myeloid cells, Ito stellate

cells, sinusoidal endothelial cells, and macrophages/Kupffer

cells were localized with the markers cluster of differentiation

45 (CD45) in red, cluster of differentiation molecule 11b

(CD11b) in red, glial fibrillary acidic protein (GFAP) in yellow,

lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) in

white, and cluster of differentiation 68 (CD68) and F4/80 in
(Aiii) Registration of (H2O)n (n=30k)-GCIB-SIMS and C60-SIMS images for alignmen

(B) Intensity changes of various species from center of CV to PV (as the blue line

(C) HCA map shows variation of different metabolites/lipids in various types of c

(D) (Di) t-SNE clustering to classify cell types as in cluster 1–8 by protein markers

metabolites only. Scale bars, 100 mm.
magenta, respectively (Figures 3Aii and S3A). As expected,

Glul (in green) expression was abundant around CV, which is

consistent with RNAscope results. Epidermal growth factor re-

ceptor (EGFR) and sodium potassium ATPase (Na/K-ATPase)

(in cyan) outlined cell borders, facilitating cell segmentation

and image alignment to register multiple lipids and metabolites

in individual cells Figure S3.

Image processing for alignment, registration, and cell segmen-

tation by Deepcell37 were shown in Figure 3Aiii. With this, the de-

tectedomicsmolecules usingdual-SIMS imaging,were registered

to individual segmented cells for further statistical analysis. A hier-

archical clustering algorithm (HCA) compared the intensity varia-

tion of monitored metabolites/lipids among different cell types,

providing a comprehensive view of cell signatures and metabolic

state. Glul-expressing cells comprised significant PI (38:4), which

metabolizes to downstream signalingmolecules phosphatidylino-

sitol phosphate (PIPs), known tobindmanyproteins and to control

protein-protein interactions.38 PE (40:6) also contributed to Glul-

positive cells, particularly cells in the inner circle of the CV and

also in the hepatocytes lining PV. Along with PA (38:4), lipids

such as PS (38:4), GD (d40:1), PI (40:6), PE (38:4), PI (40:4), PE

(36:2), FA (20:0), PA (41:6), and PI (36:4) were more abundant in

Glul-positivecells around theCV.Theglucosecontentwashighest

among theCD11b-positivecells, suggestingaglucose-dependent

metabolism. Sinusoidal cells labeled by LYVE-1 were rich in lipids

with a lowdegreeof unsaturation. Cells expressing the PPhepato-

cyte-specificmarker (HepPar1/CPS1)consistedofahigher level of

LPAs and CLs (Figure 3C).

Next, t-distributed stochastic neighbor embedding (t-SNE) was

performed to cluster the single-cell data points that integrate

omicsmoleculesdetectedusingSIMS,demonstrating thatmetab-

olites and lipids classify the cell populations. Clusters 1–8

highlighted features around the PP and PC regions by proteins

(Figure 3Di) and metabolites/lipids (Figure 3Dii), where the same-

colored clusters shared similar distributions. Green clusters sur-

rounded the CV region, and red clusters surrounded the green

clusters, indicating that theGlul-positive cells havedistinguishable

metabolic/lipidomic combinations associated with different bio-

logical processes. Brown (Figure 3Di) and magenta (Figure 3Dii)

clusters identified the portal endothelial cells and immune cells

that are consistent with the localization of LYVE-1-, CD68-, and

CD45-positive cells. Thecell clustersbymetabolites/lipids (purple,

brown, blue, and orange in Figure 3Dii) were co-localized with

HepPar-1-positive cells (blue inFigure3Di).Hence, theabundance

of metabolites and lipids allows not only for classification of cell

types similar to the protein markers but also for clustering of cells

into distinct metabolic subpopulations that are not captured by

conventional protein markers.

SIMS delineates cell-type-specific multi-omics at the
single-cell level in human liver
The sameworkflow of dual-SIMS imaging was applied to PT on a

human liver section (Figure 4). The high-resolution images
t; single-cell segmentation using DeepCell.

in Ai).

ells.

. (Dii) t-SNE clustering to classify the cell types as in cluster 1–8 by lipids and
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Figure 4. Dual high-resolution SIMS imaging delineates themetabolomic and lipidomic states in different cell types on the human liver tissue

section
(A) (Ai) H&E image. The selected region contains the portal triad. Representative color overlay images of dual-SIMS in (Aii) and (Aiii).

(Aii) Metabolites and lipids image in the same region as in (Ai) on a serial frozen-hydrated section using (H2O)n(n=30k)-GCIB-SIMS imaging at the spatial resolution of

3 mm. Blue, PS 36:1; magenta, PI 38:4; green, heme B. More single-species images are in Figure S4.

(legend continued on next page)
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revealed the heterogeneous biomolecules; as PS (36:1) outlined

the PT, PI (38:4) was localized outside the PT primarily, and heme

Bwas inside of the PT (Figure 4Aii). The single-ion images and list

of 246 metabolites and lipids are in Figure S4 and Table S1C;

among them, 120 species were annotated.

PCA analysis distinguished two anatomical features and

metabolic flux around the PT. The PT ring has abundant PS

(36:1), PA (36:1), and PI (38:4), with significant higher PS (36:1)

that defines the PT region. Inside the PT ring, hemeB and several

PA species were dominant. Themetabolic flux also showed anti-

correlated patterns, with taurodeoxycholic acid/taurodeoxy-

cholic, FA (C18:2) and FA (C18:1), taurocholic acid, and PEp

(40:6) to the left of the PT ring and GSH to the right. On the

same tissue, protein markers specified the major cell types, im-

mune cells, and cell states (Figure 4Aiii). With the image align-

ment and cell segmentation (Figure 4Aiv), the integrated omics

in single cells were used for further discriminant analyses.

HCA elucidated the variation of monitored metabolites/lipids

in different cell types and structural regions, namely CD45,

LYVE-1, CD68, smooth muscle a-Actin (SMA), and collagen I

(Figure 4B). These markers were validated by IHC and detailed

in STAR Methods39 and Figure S3. Leukocytes (CD45 postive)

were located mainly around the PT, sharing similar metabolism

of high glucose consumption. Sinusoidal cells (LYVE-1 positive)

comprise the higher ganglioside GM3 and PE species, which

were highly relevant to cell adherence and mechanical resis-

tance to highly packed cellular region.40,41 Without distinct lip-

idomic and metabolic features, macrophage/Kupffer cells

(CD68 positive) seemed to have slightly higher CLs. As a major

tissue structure marker, SMA was co-localized with the PS

36:1-abundant region. The correlation of selected metabolites

(heptanoic acid and heme B), lipids (PS 36:1), and proteins

(CD4, CD45, CD68, and SMA) in 10 serial sections were pre-

sented in the fused 3D reconstruction of liver PT (Video S2).

t-SNE clustering was further applied to classify cells using pro-

tein and metabolites/lipids (Figures 4Ci and 4Cii, respectively).

Clusters in gray and brown (Figure 4Cii) were consistent with

collagen I- and SMA-positive areas (red, brown, and green clus-

ters in Figure 4Ci). PP hepatocytes expressing Arg-1 and Alb

(pink in Figure 4Ci) were sub-classified into clusters in orange,

blue, magenta, and purple (Figure 4Cii). The result recapitulated

that metabolites and lipids are efficient to characterize cell types

and cell states.

RNAscope, MALDI Orbitrap, and LC-MS/MS validate the
core MSI workflow
To validate antibody markers used in the study, namely CD68,

Glul, Alb, and LYVE1, single-molecule mRNA fluorescent in situ

hybridization was performed on human liver tissue section. Color

overlay images from RNAscope show the distribution of the RNA

copies (Figures 2A and 2E), consistent with images of proteins in
(Aiii) Proteins image by lanthanides-conjugated antibodies from the same region

1 mm. Green, Alb; cyan, CD 68; lime green, CD45; red, LYVE-1; SMA, white; mage

images (i.e., Aii and Aiii).

(Aiv) Registration of (H2O)n(n=30k)-GCIB-SIMS and C60-SIMS images for alignmen

(B) HCA map shows the variation of different metabolites/lipids in different types

(C) (Ci) t-SNE clustering to classify the cell types as in cluster 1–8 by protein ma

(Cii) t-SNE clustering to classify the cell types as in cluster 1–8 by lipids and met
Figure S3. For example, protein GS and its correspondingmRNA

transcript, Glul, were localized around the CV but not the PV. In

addition, fluorescent slide scanning allowed identification of the

PV and CV, compared with H&E staining in mouse liver tissue

(Figures 2 and S1B).

The identity of the zone-specific lipids was assessed using ac-

curate mass match of the MSI-derived ions of interest against

the library databases,42 followed by UPLC-MSE fragment anal-

ysis from lipidomics analysis from liver tissue lipid extracts

(Table 1). The analysis of DESI and lipidomics analysis with

lock mass correction helps to align the precursor mass with

high accuracy. The UPLC-MSE data were searched for the

most commonly formed adducts, [M+ H+, Na+, K+]+ in positive

ion mode for DESI and [M-H]� for negative ion mode for both

DESI and SIMS. The metabolites were annotated by accurate

mass search against the library database43,44 and ion mobility

drift time of the standard when available. Most of the precursor

ion matches between the DESI and LC-MS/MS were phospho-

lipids and glycerolipids in positive ion mode, and those for

SIMS were phospholipids in negative ion mode. Similarly, confir-

mation of lipid species based on MALDI is shown in Tables S1D

and S1E. DESI and SIMS identified a complementary list of spe-

cies around CV and PV (Tables 1), resulting from the difference in

preferential ionization for different lipid species. High-resolution

SIMS uncovered several metabolites and lipids that have a thin

circular structure around both central and PVs, such as GSH,

AMP, PE (40:6), PA (36:1), PS (38:3), and PI (38:4); some species

were more concentrated inside veins, such as LPAs (Figures S2

and S4). DESI confirmed distinct distributions of free FAs, conju-

gated bile acids, and glycerolipids (Figures 2 and S1). Some spe-

cies were validated by in situ tandem MS using MALDI

(Tables S1D and S1E). However, metabolites and FAs were not

validated by MALDI due to the mass interferences for species

below m/z 350 from the matrix. These results demonstrate the

complementary utility of a variety of MSI methods for more

comprehensive imaging and annotation of biosamples.

DISCUSSION

This study demonstratesmajor technological improvements that

enable a multimodal workflow for multiplexed imaging of metab-

olites, lipids, and proteins for integrated spatial omics of anatom-

ical structures at single-cell resolution. This multi-scale biomole-

cule detection works efficiently to distinguish anatomical

features (e.g., CV, PV, and PT) and metabolic zones in liver tis-

sue. Moreover, significant variations of species are observed in

different types of liver cells, demonstrating that different meta-

bolic states are needed for a spatial division of labor to efficiently

manage a multitude of metabolic functions. Finally, we observed

sex-specific differences in the distributions of many lipid

species, suggesting that male and female mouse livers may be
after (H2O)n(n=30k)-GCIB-SIMS imaging, using C60-SIMS at spatial resolution of

nta, collagen I; blue, nuclei. (Aiii) The image alignment and registration of SIMS

t; single-cell segmentation using DeepCell.

of cells.

rkers.

abolites only. Scale bars, 100 mm.
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Table 1. Validation of lipid ion species from SIMS and DESI-MSI with MALDI-MSI and LC-MS/MS

Pericentral vein region Periportal vein region

(H2O)n-GCIB-

SIMS negative

ion mode

MALDI

orbitrap

validation

LC-MS

precursor

mass

LC-MS/MS

validation
(H2O)n-GCIB-SIMS

negative ion mode

MALDI orbitrap

validation

LC-MS

precursor

mass

LC-MS/MS

validation

303.23 FA C20:4 NA NA NA 255.23 FA C16:0 NA NA NA

311.23 FA C20:0 NA NA NA 279.23 FA C18:2 NA NA NA

742.53 PE 36:2 PE (18:0/18:2) NA NA 283.26 FA C18:0 NA NA NA

766.54 PE 38:4 PE (18:0/20:4) NA NA 514.28 Taurocholic acid NA NA NA

911.56 PI 40:5 PI (18:0/22:5) NA NA 747.50 PA 40:6 PA (18:0/22:6) 747.48 PA 40:6

913.58 PI 40:4 PI 40:4 NA NA 834.53 PS 40:6 PS (18:0/22:6) 834.53 PS 40:6

857.51 PI 36:4 PI (16:0/20:4) NA NA 835.53 PI 34:1 PI (12:0/22:1 (11Z)) 835.53 PI 34:1

723.50 PA 38:4 PA (18:0/20:4) 723.48 PA 18:2/20:2 1454.03 CL 72:5 NA NA NA

810.53 PS 38:4 PS (18:0/20:4) 810.54 PS 38:4 1455.95 CL 72:4 NA NA NA

812.54 PS 38:3 NA 812.55 PS 38:3 1480.94 CL 74:6 NA NA NA

885.55 PI 38:4 PI (18:0/20:4) 885.55 PI 38:4 1482.08 CL 74:5 NA NA NA

– – – – – 1483.94 CL 74:4 NA NA NA

– – – – – 1484.98 CL 74:4 NA – –

DESI negative

ion mode

MALDI

orbitrap

validation

LC-MS

precursor

mass

LC-MS/MS

validation
DESI negative ion mode MALDI orbitrap

validation

LC-MS

precursor

mass

LC-MS/MS

validation

281.24 FA 18:1 NA NA NA 124.01 Taurine NA NA NA

295.23 FA 18:2;O NA NA NA 306.08 GSH NA NA NA

293.21 FA 18:3;O NA NA NA 762.51 PE 38:6 NA 762.50 PE 38:6

309.28 FA 20:1 NA NA NA 346.05 AMP/dGMP NA NA NA

311.3 FA 20:0 NA NA NA 175.03 Ascorbic acid NA NA NA

307.26 FA 20:2 NA NA NA 514.28 ST 24:1;O5;T NA NA NA

– – – – – 512.27 Sulfoglycolithocholate NA NA NA

– – – – – 498.29 ST 24:1;O4;T NA NA NA

– – – – – 790.53 PE 40:6 PE (18:0/22:6) 790.53 PE 40:6

DESI positive

ion mode

MALDI

orbitrap

validation

LC-MS

precursor

mass

LC-MS/MS

validation
DESI positive ion mode MALDI orbitrap

validation

LC-MS

precursor

mass

LC-MS/MS

validation

647.46 DG 37:7 NA 647.45 DG 37:7 818.50 PC 36:5 PC 36:5 NA NA

840.55 PC 39:7 NA 840.55 PC 39:7 756.54 PC 32:0 PC 34:3 756.54 PC 32:0

848.54 PC 38:4 PC 38:4 848.55 PC 38:4 560.31 LPC 18:1 NA NA NA

633.48 DG 34:1 NA 633.48 DG 34:1 562.32 LPC 18:0 PC 18:0 NA NA

631.46 DG 34:2 NA 631.46 DG 34:2 518.32 LPC 16:0 PC 16:0 NA LPC 16:0

659.49 DG 36:2 NA 659.49 DG 36:2 760.58 PC 34:1/PE 37:1 PC 34:1 NA NA

657.48 DG 36:3 NA 657.48 DG 36:3 806.56 PC 38:6/PE 39:3 PC 36:3 NA NA

655.46 DG 36:4 NA 655.46 DG 36:4 542.32 LPC 18:2 NA NA LPC 18:2

856.56 PC P-40:6 NA 856.55 PC P-40:6 786.59 PC 36:2 PE (36:2) 786.59 PC 36:2
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functionally quite distinct, with implications for understanding

sex-specific differences in disease risk and normal physiology.

Further studies with a large sample size with different age

groups could infer robust sex and liver zonation-specific lipid

biomarkers.

Spatial metabolomics directly mirrors the cell metabolic

phenotype and upstreamgenetic activities in health and disease.

There is a growing interest in dissecting cellular and metabolic

heterogeneity directly on tissue at single-cell resolution. This re-

quires characterizing cell types and cell neighborhoods, as well

as an atlas of biomolecule abundanceswithin different cell types,
10 Developmental Cell 59, 1–13, April 8, 2024
taking into account neighborhoodswithin the tissue architecture.

However, there are few analytical tools to imagemultiple types of

molecules in single cells directly on tissue without dissociation.

Consecutive dual-SIMS imaging on the same frozen-hydrated

tissue offers single-cell resolution and high chemical sensitivity

to integrate spatial multi-omics (untargeted metabolomics and

lipidomics and targeted proteomics) in the same individual cells

on a single tissue at near-native state. With well-preserved gra-

dients of small molecules, which would be otherwise diffused

by chemical fixation and drying, the metabolic state of different

types of cells can be revealed in liver tissue. In addition, cell
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population separation on tissue directly by metabolic states has

not been reported, but some success has been shown in classi-

fication of co-cultured cells by metabolic states usingMALDI im-

aging and the computational approach SpaceM.45 MALDI tech-

nology has also been further developed for high-resolution and

high chemical sensitivity imaging at %5 mm resolution.46 The

laser post-ionization enhances analytical sensitivity by up to

several orders of magnitude, such as transmission-mode

MALDI-2 MSI.47 However, matrix application and incompatibility

of cryogenic analysis may hinder its applications to single-cell

metabolomics. It is also time-consuming to acquire high-resolu-

tion images in large samples (e.g., 3 days for one million pixels).

Moreover, transmission-mode geometry technology is mostly in

development mode with in-house setups. We adapted DESI in

our workflow, owing to the simple sample preparation without

matrix application, which minimizes the interference with small

metabolic species.

With cryogenic dual-SIMS imaging at high resolution and data

processing, we show that integrated metabolomic and lipidomic

profiling in individual cells can be used for cell classifications

without protein markers and tissue dissociation. As the role of in-

dividual lipid species are understudied, this platform could be

extended to overlay spatial transcriptomics and proteomics,

characterizing the distribution of enzymes involved in lipid meta-

bolism to fully elucidate the spatial interaction and its functional

significance. This will provide a rare opportunity to investigate

previously unknown cellular subtypes and their unique protein-

lipid-metabolite interactions.

Our multimodal pipeline with high-resolution multimodal MSI

and computational processing has added layers of spatial omics

about metabolic and lipidomic features in different types of cell

populations, distinguishing subpopulations and distinct meta-

bolic functions within individual cells on liver tissue. The work-

flow can be readily applied to liver disease samples for the dis-

covery of metabolic dysregulation in different cell types,

heterogeneous shift in the disease microenvironment, and cell-

cell interactions, ultimately leading to therapeutic opportunities.

Limitations of the study
The purpose of the study was to develop a multimodal imaging

workflow to integrate multi-omics in the same sample to under-

stand functional unit/cell-type-specificmetabolic variation. The

DESI and SIMS imaging on both mouse and human tissue were

performed to validate the technique and data processing algo-

rithm. However, there are some limitations to be overcome for

future applications. First, we need to fit sufficient biological rep-

licates in a reasonable time frame to draw any statistical signif-

icance. Our workflow takes advantage of faster DESI imaging to

annotate the smaller areas of interest, which are for further

high-resolution imaging using dual-SIMS. Therefore, biological

replicates are feasible at varying levels of resolution, either tis-

sue or cellular level. Second, in situ species confirmation is

lacking. While the annotations of the lipid species were done

by comparing the m/z values to accurate masses in the lipid

and metabolite databases, and further validated by UPLC-

HDMSE with molecular and fragmentation conformation, not

all species that were observed in MSI could be found in the lip-

idomics library, and hence some of the annotations could be

isomeric species, as noted in the supplemental tables. Last,
there are limited training datasets for cell segmentation to

match all the cell types. Additional cell membrane markers

could be used in the future to enhance the segmentation of

cell types with varied morphologies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

89Y CD45(Mu) Fluidigm Cat# 3089005B; RRID: AB_2651152

142Nd Heppar-1/CPS1(Mu) Novus Cat# NBP3-08970; RRID: AB_2909615

143Nd GFAP(Mu) Abcam Cat# ab218309; RRID: AB_2909614

147Sm GS (Mu) Abcam Cat# ab240193; RRID: AB_2909636

152Sm F4/80(Mu) Abcam Cat# ab6640; RRID: AB_1140040

155Gd CD11b(Mu) Ionpath Cat# 715503-100; RRID: AB_3086752

156Gd CD68(Mu) Abcam Cat# ab237968; RRID: AB_3086750

174Yb LYVE1(Mu) Novus Cat# NB600-1008; RRID: AB_10000497

176Yb EGFR(Mu) Abcam Cat# ab272293; RRID: AB_2909619

176Yb Na/K ATPase(Mu) Abcam Cat# ab167390; RRID: AB_2890241

191 Ir Nuclear DNA(Mu) Fluidigm Cat# 201192B; RRID: AB_3086753

89Y CD45 (Hu) Cell Signaling Cat# 13917S; RRID: AB_3086754

141Pr SMA(Hu) Fluidigm Cat# 3141017D; RRID: AB_2890139

145Nd Heppar-1/CPS1(Hu) Novus Cat# NBP3-08970; RRID: AB_2909615

147Sm GS (Hu) Abcam Cat# ab240193; RRID: AB_2909636

148Nd CD31(Hu) Abcam Cat# ab264090; RRID: AB_2909616

151Eu CD68(Hu) Cell Signaling Cat# 76437S; RRID: AB_2909615

153Eu CD32(Hu) Fluidigm Cat# 3153018B; RRID: AB_2909617

158Gd Arginase1(Hu) Cell Signaling Cat# 93668S; RRID: AB_3086760

161Dy Albumin(Hu) Abcam Cat# Ab271979; RRID: AB_2909637

169Tm CD34(Hu) Abcam Cat# ab198395; RRID: AB_2889381

171Yb LYVE1(Hu) Abcam Cat# ab232935; RRID: AB_2889891

176Yb EGFR(Hu) Abcam Cat# ab272293; RRID: AB_2909619

176Yb Na/K ATPase (Hu) Cell Signaling Cat# 23565S;RRID: AB_3086761

191 Ir Nuclear DNA(Hu) Fluidigm Cat# 201192B; RRID: AB_3086753

196Pt Collagen I(Hu) Abcam Cat# ab215969; RRID: AB_2909621

Mm-Alb-C2 (RNA scope) ACD Bio 437691-C2

Mm-Glul (RNA scope) ACD Bio 426231

Mm-Ptprc-C3 (RNA scope) ACD Bio 318651-C3

Hs-GLUL-No-XMm (RNA scope) ACD Bio 511171

Hs-CD68-C4 (RNA scope) ACD Bio 560591-C4

Hs-LYVE1 (RNA scope) ACD Bio 426911

Biological samples

Healthy mouse liver Charles River 17 weeks old male (n=3) and

female (n=3) C57/BL6 mice

Healthy human liver Columbia University tissue bank 51-year-old female

Deposited data

SIMS data Scholarsphere https://doi.org/10.26207/6a38-tr35

DESI positive mode human liver data HuBMAP data portal https://doi.org/10.35079/HBM875.

FTTV.999

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

DESI negative mode human liver data HuBMAP data portal https://doi.org/10.35079/HBM238.

PWFH.224

SIMS 3D liver construction HuBMAP consortium https://portal.hubmapconsortium.org/

preview/multimodal-mass-spectrometry-

imaging-data

Software and algorithms

Ionoptika Image Analyzer Ionoptika Ltd. https://ionoptika.com

ImagingSIMS Jay Tarolli https://github.com/ImagingSIMS/

ImagingSIMS

DeepCell Bannon et al.48 https://deepcell.com/

SCiLS Bruker Corp. https://www.bruker.com/

Progenesis Waters Corp. https://www.waters.com/

MSE Dataviewer Waters Corp. https://www.waters.com/

Other

Multimodal imaging pipeline N/A https://dx.doi.org/10.17504/protocols.io.

kxygx913zg8j/v1

Cryosectioning fresh frozen tissues for

multimodal imaging

N/A https://dx.doi.org/10.17504/protocols.io.

e6nvwjmjzlmk/v1

DESI imaging mass spectrometry on liver

tissue

N/A https://dx.doi.org/10.17504/protocols.io.

ewov1nze7gr2/v1

Immunohistochemistry of liver tissue

sections

N/A https://dx.doi.org/10.17504/protocols.io.

5qpvob1k9l4o/v1

Cryogenic (H2O)n-GCIB-SIMS imaging N/A https://dx.doi.org/10.17504/protocols.io.

81wgbyynovpk/v1

Liver tissue staining with multiple

lanthanides-tagged antibodies

N/A https://dx.doi.org/10.17504/protocols.io.

b5qmq5u6

RNAscope spatial transcript imaging N/A https://dx.doi.org/10.17504/protocols.io.

kqdg3p3e7l25/v1
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RESOURCE AVAILABILITY

Lead contact
Requests for further information and resources should be directed to the lead contact, Prof. Brent R. Stockwell (bstockwell@

columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Mass spectrometry imaging raw data are available in standardized imzML format. SIMS data is available at https://doi.org/10.

26207/6a38-tr35. The imzml and selected ion images from DESI is available from https://portal.hubmapconsortium.org. The

software license is provided for analyzing the data using Ionoptika Analyser for up to 7 days. Please contact Ionoptika if you

wish to use the software beyond 7 days via our Support e-mail (support@ionoptika.co.uk). Accession numbers are listed in

the key resources table.

d Any additional information required to reanalyze the data reported in this work paper is available upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Normal human liver sample from a 51-year-old female was retrieved from the Columbia University tissue bank, under a protocol

approved by the Institutional Review Board. Informed consent was obtained from the human sample for use of the tissue in research.

Mouse liver tissues were derived from 17 weeks old male (n=3) and female (n=3) C57BL/6 mice, under an approved IACUC protocol.

Mice were housed at a maximum of 5 mice per cage on irradiated bedding (Bed-O’Cobs� bedding, WF Fisher and Son, Somerville,

NJ) in ventilated microisolator cages. Mice were provided with irradiated Enviro-Dri for nesting material. Mice had access to
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autoclaved or ROwater and irradiated pelleted diet ad libitum. Mice were pathogen-free and weremaintained in accordance with the

Guide for the Care and Use of Laboratory Animals in an AAALAC-accredited facility.

METHOD DETAILS

Tissue preparation
The excised liver tissues were flash frozen on dry ice filled with hexane and stored at -80�C until use. Small blocks of both human and

mouse tissue were cryosectioned at 8-10mm thickness and thawmounted onmicroscope glass slides for H&E, DESI and RNAScope

analysis and gold-coated slides for SIMS analysis. For multimodal imaging, consecutive sections for DESI, H&E, SIMS, and

RNAScope were placed on the respective slides and stored at -80�C until analysis.

Histology
Tissue sections were stained with hematoxylin and eosin (H&E) staining at Columbia University Molecular Pathology Shared

Resource facility, scanned at 20X magnification and histological examination was performed by a pathologist to annotate the

anatomical structures.

DESI MSI data acquisition and analysis
All the experiments were performed on Synapt G2-Si QToF mass spectrometer (Waters, Milford, MA), coupled to a DESI ion

source. Data was acquired in sensitivity mode in both positive and negative ion mode with mass range of m/z 100-1000. The

DESI parameters used were capillary voltage and sampling cone voltage of 0.65kV and 50V respectively, scan time of 0.145

sec/pixel, pixel size of 40 mm2, DESI sprayer angle of 75�, nebulizing gas (N2) pressure of 0.3 PSLM. The solvent used was meth-

anol: water 95:5 (v/v) with 0.01% formic acid and 20pg/ml leucine enkephalin, at a flow rate of 1.5 ml/min. Tissue sections were

dried in a desiccator for �10 min prior to analysis. Peak picking and lockmass correction using the protonated ion of leucine

enkephalin ([M+H]+, m/z 556.2771) or the deprotonated molecular ion ([M-H]-, m/z 554.2615) was implemented in MassLynx soft-

ware (Waters, version 4.1). The centroided data files were converted to mzml using msconvert from Proteowizard49 followed by

conversion to imzml format using imzMLConverter.50 The imzml files were imported into the SCiLS lab software (Bruker, version

2021c) and subsequent data analysis was performed. Total ion count (TIC) normalization was performed and up to n peaks were

selected of m/z intervals of ±0.03Da were selected. Spatial segmentation analysis was performed using bisecting k-means clus-

tering on edge-preserving denoised data. Area under the receiver operator characteristic curve was also performed within the

SCiLS platform.

Untargeted Lipidomics sample preparation
20mg of liver was homogenized using beadrupter and lipids were extracted using 1050ul of 1:2 ratio of ice-cold methanol containing

0.01% w/v butylated hydroxyl toluene and dichloromethane, vortex mixing and incubating the samples overnight at -20C. One vol-

ume of ice-cold water was added and mixed for phase separation followed by centrifugation. The lower organic phase containing

lipids were collected in a new vial, dried under a gentle stream of nitrogen and stored at -80C until analysis. The samples were re-

constituted in isopropanol: acetonitrile: water at the ratio of 11:9:2 v/v/v before analysis.

Chromatographic separation and mass spectrometry analysis
Lipidomics experiments were performed on Synapt G2-Si mass spectrometer equipped with Acquity UPLC system (Waters, Milford,

MA) in both positive and negative electrospray ion modes. The chromatographic separation was performed on Acquity UPLC

BEH300 C18 column (1.7um particle size, 2.1X100mm) (Waters, Milford, MA) over an 18 min gradient. The column temperature

was set at 55C. A binary mobile phase consisted of (A) 60:40 v/v acetonitrile: water and (B) 85:10:5 v/v/v isopropanol/acetonitirile/

water, each containing 10mM ammonium acetate and 0.1% acetic acid. The gradient was initiated at 40% B, followed by linear

gradient to 50% by 2min ramped up to 99%B by 18min, and the column was equilibrated for 2min to the initial condition. The

flow rate was set at 400ul/min and injection volume was 2ul in positive mode and 5ul in negative mode. Data was acquired on

high-definition data independent mode with ion mobility (HDMSE), over the mass range of m/z 50 to 1200 Da and scan rate of

0.1sec per scan. The parameters used for mass spectrometry data acquisition is as follows: for positive and negative mode, capillary

voltage and sampling cone voltage of 2.8kV and 35V; and 2.5kV and 32V were used respectively. The source and desolvation tem-

perature were 120�C and 500�C respectively. Desolvation gas (N2) flow was set at 850 L/hr. MS data was calibrated using leucine

encephalin infusion at a flow rate of 10ml/min. Default ion mobility settings were used. The low collision energy was set at 4 eV

and high energy was 25-60 eV. Mass calibration was performed using sodium formate and collision cross section (CCS) calibration

was performed using CCS Major mix (Waters).

Lipid and metabolite identification
The assignment of lipids and metabolites specific of selected ions from DESI-MSI were based on its assignment based on accurate

mass and isotopic pattern score using Progenesis software (Waters Inc., Milford, MA). The accurate mass search against the

available databases including Lipidmaps,35 HMDB44 and Metlin43 for [M+ (H/Na/K)]+ adducts were searched in positive ion mode

and [M-H]- adducts in negative ion mode. For UPLC-HDMSE lipidomics data, the assignment of the lipid features was based on
e3 Developmental Cell 59, 1–13.e1–e6, April 8, 2024
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retention time information, accurate mass as well as fragmentation information. Fragmentation match was made in Progenesis soft-

ware, where fragmentation score and match were assessed. It was also performed in MSE dataviewer (Waters, Milford, MA), where

the fragments were confirmed against the Lipidmaps structure database (LMSD)51 for the adducts mentioned above. Finally, the ac-

curate mass of DESI-MSI based ion was matched against the UPLC-HDMSE data for assignment. Annotation of small metabolites

and lipid species not detected by LC-MS/MS were based on accurate mass match of precursor ion.

Successive SIMS imaging and data processing; Cryogenic (H2O)n-GCIB-SIMS
Both (H2O)n-GCIB and C60-SIMSwere performed on a buncher-ToF instrument, J105 3DChemical Imager (Ionoptika, Southampton,

UK. Abbv. J105). Thewater cluster ion beam is pulsed through a pulser in the gun column, where the distance to the sample surface is

0.533 m. Beam tuning was assisted with an oscilloscope (Tektronix TDS 2024, USA) with detection by a secondary electron detector

(SED). The singly-charged (H2O)n cluster size at beam energy of 70 kVwith a time of flight (ToF) of 103 ms was calculated using the ToF

equation as n = 30,900. The SED offset was 8 ms. Beam focus was measured by scanning a 1000 mesh grid (Agar Scientific, Essex,

UK). The average beam spot sizes were calculated using 20/80 percent of maximum intensities and were 1.60±0.01 mm and

1.16±0.45 mm for 70 keV (H2O)30k
+ and 40 kV C60

+, respectively. The beam dither was adapted to match the image pixel size. The

mass resolution m/Dm was 6875 around m/z 100, and 10,000�12,000 up to m/z 2000. The live readout of mass resolution was

from the software, Ionoptika SIMS Mainframe during the data acquisition.

The gold coated Si wafer with the frozen-hydrated mouse/human liver tissue section was plunged into liquid nitrogen and inserted

to the pre-chilled cold sample stage in J105 instrument and kept at 100 K during GCIB-SIMS imaging. This cryogenic sample

handling preserved the frozen-hydrated state thus maintaining the chemical gradients in the tissue section.

Guided by the anatomical features on the semi-serial H&E stained section, an area of interest was selected for SIMS imaging in

negative ion mode using a 70 keV (H2O)30k
+ beam. The acquisition was in negative ion mode with 256 3 256 pixels using a 2 3 2

tiled image mode for mouse liver tissue sections, or 7683768 pixels using a 33 3 tiled image mode for human liver tissue sections.

Each tile covered 4003 400 mm2 (3.1 mm per pixel) for each section. The larger pixel size than the beam focus was used to image a

broader area within practical time frame and to facilitate the charge neutralization by low energy (15 eV) electron beam. 1 pA of beam

current and 296 shots per pixel, the ion doses were 3.0131012 ions/cm2 each tile.

Multiplex immunostaining
The antibody panel, designed to identify the major cell types, immune cells, cell proliferation, structure and nuclei within the liver is

described in key resources table. Briefly, after the (H2O)n-GCIB-SIMS profiling was performed, the frozen tissue was placed at -20 �C
and 4 �C consecutively for 1 h each for temperature equilibration, followed by fixation in 4% formalin solution at 4 �C for 30min. Non-

specific protein binding was blocked with 3 % BSA (Bovine Serum Albumin) for 45 min at room temperature. Overnight staining was

then performed with the antibody cocktail solution (750 ug/mL for each antibody) at 4 �C. The stained slide was washed with 0.2 %

Triton X-100 in PBS (phosphate-buffered saline) 1X for 8 min before the final nuclear staining with Intercalator-Ir at 300 mL/section.

After washing with double-distilled water for 10 min and air-drying for 30 min, the slide was again inserted into the SIMS instrument,

this time for C60 imaging. For immunohistochemistry, briefly, tissue sections were fixed in cold acetone, washed, and incubated with

30% hydrogen peroxide. The sections were blocked with 10% goat serum and incubated with primary antibody for 90 mins followed

by biotinylated secondary antibody at room temperature, with washing steps in between. This was followed by addition of avidin-

biotin complex reagent and then DAB (3,30-Diaminobenzidine) with washing between steps. The stained slide waswashedwith water

and counterstained with hematoxylin, mounted with coverslip and scanned at 20x resolution.

C60-SIMS
High resolution images using 40 keV C60

+ were then acquired on the same area previously profiled by the (H2O)n-GCIB-SIMS. The

acquisition was conducted in positive mode to localize various cell types. This was achieved by spatially detecting uniquem/z ions of

the isotopic metal tags associated with cell-specific antibodies. To resolve single cells, the C60
+ beamwas finely focused to 1.0 mm to

image roughly the same area which has been analyzed by (H2O)n-GCIB. With the beam current of 5 pA and 1000 shots per pixel,

the ion dose was 8.5731013 ions/cm2. The dwell time was 100 ms/pixel. The lanthanide tags from eight antibodies and the

nuclear marker were detected at an adequate signal intensity to allow co-registration with lipid and metabolite ions detected by

(H2O)n-GCIB-SIMS.

SIMS data processing
Single mass channels from tiled C60 and (H2O)n-GCIB-SIMS images were extracted using Ionoptika Image Analyser (Version

2.0.2.11) and subsequently used for downstream processing, all performed with custom developed Python code. The ion assign-

ment of metabolites and lipids were performed by m/z matching and further validation of certain species were done by LC-MS

and MALDI orbitrap. Co-registration of C60 and (H2O)n-GCIB-SIMS images was by first selecting mass channels that demonstrated

a representative morphology of the tissue and normalizing each to an intensity range of [0, 1]. Normalized images were registered

using SimpleITK52 (v 2.0.2) to determine the best affine transform between the C60 (fixed) and H2O (moving) images by minimizing

the mean square difference using a gradient descent optimizer. All H2O channel data was then transformed to the C60 image space.

The general nuclear andmembrane channels from the C60 data set were then used to segment single cells using DeepCell48 (v 0.9.0).

Since the (H2O)n-GCIB-SIMS data has been registered to the C60 image space, the segmentation instances can be used to extract
Developmental Cell 59, 1–13.e1–e6, April 8, 2024 e4
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integrated counts of species in both SIMS data sets. Integrated protein expression from C60-SIMS images was used to determine

thresholds for cell classification (marker positive or negative). Hierarchical clustering analysis (HCA) was performed with seaborn

(v 0.11.1) on the integrated lipid andmetabolite mass channels from the (H2O)n-GCIB-SIMS data set, using the cell types determined

from the C60 image data. The Algorithms of the data processing can be downloaded from the shared resources as in Software and

algorithms of key resources table.

To create a 3D visualization of the lipid, metabolite, and protein information, all SIMS images were registered into the same image

space. First, each depth of the z-stack for the C60-SIMS protein images was co-registered into the image space of the first layer.

Then, the (H2O)n-GCIB-SIMS lipid and metabolite images were co-registered at each depth to the previously registered C60-SIMS

protein image from that depth. The resampled C60-SIMS and (H2O)n-GCIB-SIMS image data for each depth was saved as a CSV

file, imported into ImagingSIMS (version 3.8.1.1) and used to define a volume for each protein, lipid, and metabolite species of inter-

est. These volumes were combined and rendered using volume raycasting of the scalar volume data.

MALDI-MSI
Chemicals and solvents (analytical grade) were purchased from the following sources: a-Cyano-4-hydroxycinnamic acid 98%

(CHCA) (Sigma Aldrich), 1,5-Diaminonaphthalene 97% (DAN) (Sigma Aldrich), acetonitrile (ACN) (Honeywell), chloroform (Acros Or-

ganics), methanol (Carl Roth), and trifluoroacetic acid (TFA) (Sigma Aldrich). All chemicals used in this study were stored, handled,

and disposed of according to good laboratory practices (GLP).

Mouse and human liver sections on ITO glass (Sigma, Milwaukee, WI, US) were stored at -80�C until analysis. Prior to matrix appli-

cation, the tissue sections were removed from the freezer, placed on a cold steel plate (-20�C) and freeze-dried in a desiccator for

30 minutes. The combination of steel plate and desiccator was efficient for removing the water from the tissue without compromising

its structural integrity and limiting the migration of analytes. On the mouse liver section, DAN matrix (10 mg/ml, ACN:H2O 7:3) was

applied. For the analysis of human liver, 2 section were coated in matrix, one with DAN (same as mouse) for negative ion mode

and one with CHCA matrix (5mg/ml, CHCl3:MeOH 1:1) for positive ion mode analysis. Application was performed with an HTX TM

sprayer (HTX Technologies LLC, USA), temperature: 30�C (Dan)/ 40�C (CHCA), passes: 8 (DAN)/16 (CHCA), flow rate: 0.12 ml/

min, velocity: 1200 mm/min, drying time: 2 s, line spacing 2.5 mm.

AP-MALDI analysis was performed using an AP-MALDI UHR ion source (Masstech Inc., USA), which has been described in detail

elsewhere,40,41 coupled to an LTQ/Orbitrap Elite high-resolution mass spectrometer (Thermo-Fisher Scientific, USA) in positive and

negative ion mode. For imaging, the AP-MALDI source was operated in ‘‘Constant Speed Raster’’ motion mode. To explore the

detectable species and instrument settings for both ion modes, one whole mouse liver section was analyzed interlaced in positive

and negative ion mode with a laser beam diameter of 20 mm and a stepping size of 50 mm, laser settings 2500 Hz, 5%. Spectrum

acquisition parameters were 800 msmaximum injection time, mass range: 500 – 2000 Da and mass resolution: 120k at m/z 400. Hu-

man liver was analyzed with higher spatial resolution (15 mm laser spot and stepping size) and positive (CHCA matrix, laser settings

500 Hz, 10%) and negative (DAN matrix, laser settings 1500 Hz, 5%) ion mode analysis was performed on 2 separate, consecutive

sections. Spectrum acquisition was adjusted to 500 ms maximum injection time, mass range: 350 – 1550 Da and mass resolution:

120k at m/z 400. Species identification was performed with on-tissue tandem-MS with a 1.5 Da isolation window, and collision-

induced dissociation/ higher-energy collision dissociation (CID/HCD) was performed with collision energies of 27-45%, adjusted

for each species individually. Tandem-MS scans were summed up over 30-120 seconds. Data analysis and visualization was per-

formed with Thermo Xcalibur 2.2 (Thermo-Fisher Scientific, USA), MultimagingTM (ImaBiotech, France), METASPACE,42 and

LipostarMSI (Molecular Horizons Srl, Italy).43 Lipid identification was performed in LipostarMSI (database: LIPIDMAPS, mass accu-

racy: 2 ppm; mass and isotopic pattern score: 80%+).

RNAScope
We captured transcription distributions of select liver cell marker genes via in situ hybridization of specific targeting probes with

the RNAscope Multiplex Fluorescent v2 Assay Protocol27 optimized for fresh-frozen samples. Our modifications to the commercial

protocol included using half-concentration wash buffer (0.5X) for all wash steps downstream of probe incubation and excluding the

recommended protease step entirely. In mouse tissue, we spatially detected the transcripts for, ALB (Albumin), GLUL (Glutamine

synthetase), and PTPRC (Protein Tyrosine Phosphatase Receptor Type C), and in human tissue, we spatially detected transcripts

for GLUL, CD68 (Macrophage Antigen CD68), and LYVE1 (Lymphatic Vessel Endothelial Hyaluronan Receptor 1).

Tissue sections were first post-fixed with 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS) and dehydrated in

Ethanol (EtOH) immediately after fixation, immersed for 5 minutes at a time in 50% EtOH, 70% EtOH, 100% EtOH, and 100%

EtOH an additional time. Samples were then air-dried and treated with RNAscope� Hydrogen Peroxide Reagent for ten minutes

at 23�C to 25�C and washed twice with deionized water. Importantly, we excluded the commercial protease step because tissue

integrity was lost, and we could achieve stronger signal without any protease treatment. These steps constitute the pretreat-

ment steps.

These pre-treated sample slides were incubated with prewarmed target probes (20 nmol/L of each oligo probe) overnight. In

mouse tissue, ALB was targeted with RNAscope� Probe- Mm-Alb-C2 (ACD;Cat No. Cat No. 437691-C2), GLUL was targeted

with RNAscope Probe- Mm-Glul (ACD;Cat No. 426231), and PTPRC was targeted with RNAscope� Probe- Mm-Ptprc-C3
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(ACD;Cat No. 318651-C3). In human tissue, GLUL was targeted with RNAscope� Probe- Hs-GLUL-No-XMm (ACD;Cat No. Cat No.

511171), CD68 was targeted with RNAscope� Probe- Hs-CD68-C4 (ACD;Cat No. 560591-C4), and LYVE1 was targeted with

RNAscope� Probe- Hs-LYVE1 (ACD;Cat No. 426911).

The tissue was incubated in the primary target probes overnight (18–21 hours) at 40�C inside the HybEZ hybridization oven (ACD).

After overnight probe hybridization, samples were incubated in Amplifier 1 (preamplifier) (2 nmol/L) in hybridization buffer B (20%

formamide, 53 SSC, 0.3% lithium dodecyl sulfate, 10% dextran sulfate, blocking reagents) for 30 minutes; Amplifier 2 (2 nmol/L)

in hybridization buffer B at 40�C for 15minutes; and Amplifier 3 (label probe) (2 nmol/L) in hybridization buffer C (53SSC, 0.3% lithium

dodecyl sulfate, blocking reagents) for 15 minutes. After each hybridization step, slides were washed with 0.5X wash buffer (0.053

SSC, 0.015% lithium dodecyl sulfate) two times at room temperature. Chromogenic detection was performed utilizing a horseradish

peroxidase (HPR) construct specific to each gene-dedicated imaging channel and a fluorescent Opal reagent of choice. For the

mouse sections, ALB was stained with Opal 520 Reagent (Perkin Elmer, FP1487001KT), GLUL was stained with Opal 570 Reagent

(Perkin Elmer, FP1488001KT), and PTPRC was stained with Opal 690 Reagent (Perkin Elmer, FP1488001KT). For the human sec-

tions, GLUL and LYVE1 were both stained with Opal 520 Reagent (Perkin Elmer, FP1487001KT), thus needing to be imaged in sepa-

rate tissue sections, and CD68 was stained with Opal 570 Reagent (Perkin Elmer, FP1488001KT). Each Opal reagent dye was diluted

1:1500 in RNAscope� Multiplex TSA Buffer. Nuclei were stained with DAPI (40,6-diamidino-2-phenylindole) and coverslips were

mounted over slides in Fluoro-Gel (EMS; 17985-10) and imaged by spinning disc confocal microscopy and an Aperio Versa 8 fluo-

rescent slide scanner.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass spectrometry imaging data shows the relative signal intensity, counts/pixel showing relative distribution of ions within the im-

age. The zonal difference in DESI based ion intensities between male and female mice liver were based on 3 independent samples

from each group where standard deviation was used as a statistical measure. HCAmethod is themain algorithm used in this paper to

compare the intensity differences of different metabolites/lipids species in functional units and different cell types from SIMS data.
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